Refraction-2D™

Refraction-2D™ Labeling Kits

Refraction-2D™ is the leading technology for multiplex-fluorescence 2D gel electrophoresis (also known as differential gel electrophoresis; 2D DIGE). It is based on irreversible binding of high-performance fluorescent G-Dyes (blue G-Dye100, green G-Dye200, red G-Dye300 and infrared G-Dye400) to lysine in proteins.

The G-Dyes are outstandingly photostable and can be re-imaged over periods of months. Thanks to a special low molecular weight G-Dye, minimally labeled proteins can be picked directly from the 2D gel – no further staining or destaining procedures are required.

Labeling your samples with Refraction-2D allows you to...

  • •  run up  to 4 different samples within one 2D gel 
  • •  detect proteins with abundance as low as 0.03 ng
  • •  discover even minor but important protein regulation
  • •  identify post translational protein modifications
  • •  pick spots directly from the gel, no post-staining required
  • •  expert support by our 2D coaches

.

We offer state-of-the-art 2D software Delta2D for the analysis of Refraction-2D™-labeled proteins. It provides sophisticated and quick image processing and analysis. Other 2D software are also compatible with Refraction-2D labeling e.g., SameSpots (Nonlinear Dynamics), DeCyder (GE Healthcare), PD Quest (Biorad). 

Rapid and sensitive G-Dye image acquisition can be performed with the Octoplus QPLEX (RGB-IR, ECL). 

Our labeling kits are ready to use and are available in two variants:

  1. •  Refraction-2D labeling for RGB-fluorescence
    with G-Dye100, G-Dye200 and G-Dye300
  2. •  Refraction-2D QPLEX for RGB-IR fluorescence
    with G-Dye100, G-Dye200, G-Dye300 and G-Dye400 .

 

Refraction-2D™:  100% Made in Germany

.

Refraction-2D™ Labeling Kits

 

Prod. No. Description Kit size Price
PR08 Refraction-2D

Labeling Kit

4G

(1x 1.8 nmol)

quote
PR08G Refraction-2D

Labeling Kit

2x 4G

(2x 1.8 nmol)

quote
PR09 Refraction-2D

Labeling Kit

12 G

(1 x 5 nmol)

quote
PR60 Refraction-2D

QPLEX 

Labeling Kit

4G

(1x 1.8 nmol)

quote
PR61 Refraction-2D

QPLEX 

Labeling Kit

2x 4G

(2x 1.8 nmol)

 

quote
 PR62 Refraction-2D

QPLEX 

Labeling Kit

12G

(1x 5 nmol)

 

quote

.

.

Image Refraction-2D Labeling Kit for 2D-DIGE analysis of up to 4 protein samples within one analysis.

 

.

Refraction-2D™ Kit Content

  • • G-Dye100 - high performance fluorescent dye
  • • G-Dye200 - high performance fluorescent dye
  • • G-Dye300 - high performance fluorescent dye
  • • G-Dye400 - high performance fluorescent dye (for QPLEX kits only)
  • • G-Dye solvent
  • • G-Dye labeling stop solution
  • • G-Dye low retention tips
  • • G-Dye low retention micro centrifuge tubes
  • • G-Dye100 spot picking kit (free for PR09, PR10, PR11, PR12,PR13)
  • • Expert support by our 2D Coaches

.

.

Image Refraction-2D Labeling Kit for 2D-DIGE analysis of up to 4 protein samples within one analysis.

.

Refraction-2D™ Kit Quality Assurance

To ensure you a constant quality for your assays all G-Dyes and related Refraction-2D™ kits are subject to stringent quality control. Every batch is checked for sensitivity and labeling efficiency and only kits that succeeded our testing will therefore be delivered to you. All batches are checked periodically in a biweekly fashion throughout the shelf live mentioned on the bag label.

.

.

Refraction-2D™ Labeling Kit - Quality Label

.

Refraction-2D™ Publications

Herzog R, Wagner A, Wrettos G et al. Improved Alignment and Quantification of Protein Signals in Two-Dimensional Western Blotting. Journal of Proteome Research 2020;19(6):2379-2390. DOI: 10.1021/acs.jproteome.0c00061

Hecht-Höger AM, Braun BC, Krause E et al. Plasma proteomic profiles differ between European and North American myotid bats colonized by Pseudogymnoascus destructans. Mol Ecol. 2020;29(9):1745‐1755. doi:10.1111/mec.15437

Gemoll T, Rozanova S, Röder C et al. Protein Profiling of Serum Extracellular Vesicles Reveals Qualitative and Quantitative Differences After Differential Ultracentrifugation and ExoQuickTM Isolation. J Clin Med. 2020;9(5):E1429. Published 2020 May 12. doi:10.3390/jcm9051429

Boehm M, Herzog R, Klinglmüller F et al. The Peritoneal Surface Proteome in a Model of Chronic Peritoneal Dialysis Reveals Mechanisms of Membrane Damage and Preservation. Front Physiol. 2019; 10: 472.

 

 

Fragkostefanakis S, Simm S, El‐Shershaby A et al. The repressor and co‐activator HsfB1 regulates the major heat stress transcription factors in tomato. Plant Cell Environ. 2019; 42: 874890. https://doi.org/10.1111/pce.13434

 

Hecht-Höger A (2019). Development and application of novel immunological approaches to chiropteran immunology. Dissertation.

 

 

Lennicke C, Rahn J, Bukur J et al. Modulation of MHC class I surface expression in B16F10 melanoma cells by methylseleninic acid. Oncoimmuncology. 2017; 6(6): e1259049.

Lennicke C, Rahn J, Kipp AP et al. Individual effects of different selenocompounds on the hepatic proteome and energy metabolism of mice. Biochim Biophys Acta Gen Subj. 2017;1861(1 Pt A):3323-3334. doi:10.1016/j.bbagen.2016.08.015

Batista R, Fonseca C, Planchon S et al. Environmental stress is the major cause of transcriptomic and proteomic changes in GM and non-GM plants. Sci Rep. 2017;7(1):10624.

Strohkamp S, Gemoll T, Habermann JK. Possibilities and limitations of 2DE-based analyses for identifying low-abundant tumor markers in human serum and plasma. Proteomics 2016; 16: 2519–2532.

Gérin S, Leprince P, Sluse FE et al. New Features on the Environmental Regulation of Metabolism Revealed by Modeling the Cellular Proteomic Adaptations Induced by Light, Carbon, and Inorganic Nitrogen in Chlamydomonas reinhardtii. Front Plant Sci. 2016;7:1158.

Dekker L, Arsène-Ploetze F, Santini JM. Comparative proteomics of Acidithiobacillus ferrooxidans grown in the presence and absence of uranium. Res Microbiol. 2016;167(3):234-239. doi:10.1016/j.resmic.2016.01.007

Hanneken M, Šlais K, König S. pI-Control in Comparative Fluorescence Gel Electrophoresis (CoFGE) using amphoteric azo dyes. Data Brief. 2015;3:221-228. Published 2015 Apr 1. doi:10.1016/j.dib.2015.03.007

El Rabey HA, Al-Malki AL, Abulnaja KO, Rohde W. Proteome Analysis for Understanding Abiotic Stress (Salinity and Drought) Tolerance in Date Palm (Phoenix dactylifera L.). Int J Genomics. 2015;2015:407165. doi:10.1155/2015/407165

Tesei D, Marzban G, Marchetti-Deschmann M, Tafer  H, Arcalis E, Sterflinger K. Proteome of tolerance fine-tuning in the human pathogen black yeast Exophiala dermatitidis. Journal of Proteomics 128: 39–57.

Kühne H, Schutkowski A, Weinholz S et al. Vitamin D receptor regulates intestinal proteins involved in cell proliferation, migration and stress response. Lipids Health Dis. 2014;13:51. Published 2014 Mar 19. doi:10.1186/1476-511X-13-51

Zadražnik T, Hollung K, Egge-Jacobsen W, Meglič V, Šuštar-Vozlič J: Differential proteomic analysis of drought stress response in leaves of common bean (Phaseolus vulgaris L.). Journal of Proteomics 2013; 78: 254-272.

Hollmann M, Miller I, Hummel K et al. Downregulation of cellular protective factors of rumen epithelium in goats fed high energy diet. PLoS One. 2013;8(12):e81602. Published 2013 Dec 9. doi:10.1371/journal.pone.0081602

Pickering C, Ericson M, Söderpalm B. Chronic phencyclidine increases synapsin-1 and synaptic adaptation proteins in the medial prefrontal cortex. ISRN Psychiatry. 2013;2013:620361.

Labbus K, Henning M, Borkham-Kamphorst E et al. Proteomic profiling in Lipocalin 2 deficient mice under normal and inflammatory conditions. J Proteomics. 2013;78:188-196. doi:10.1016/j.jprot.2012.11.021

Philipp S (2012): Proteomische Analyse der Zellmembran humaner Erythrozyten als Wirtszellen des Malariaerregers Plasmodium falciparum. Dissertation

Mückschel B, Simon O, Klebensberger J et al. Ethylene glycol metabolism by Pseudomonas putida. Appl Environ Microbiol. 2012;78(24):8531-8539. doi:10.1128/AEM.02062-12

Westman JO, Taherzadeh MJ, Franzén CJ. Proteomic Analysis of the Increased Stress Tolerance of Saccharomyces cerevisiae Encapsulated in Liquid Core Alginate-Chitosan Capsules. PLoS ONE 2011; 7(11): e49335.

Fonseca C, Planchon S, Serra T, Chandler S, Saibo N, Renaut J, Oliveira MM, Batista R (2012): Selection of the best comparator for the risk assessment of GM plants - conventional counterparts vs. negative segregant. Poster presentation

Gemoll T, Laubert T, Grimme C, Roblick UJ, Habermann JK. Hochauflösende 2D-Gelelektrophorese von Knochengewebsproben. Biospektrum 2012; 18 (5): 520-521.

May C, Brosseron F, Chartowski P, Meyer HE, Marcus K. Differential proteome analysis using 2D-DIGE. Quantitative methods in Proteomics.  Methods in Molecular Biology 2012; 893 (2): 75-82.

Bjarnadóttir SG, Hollung K, Høy M et al. Changes in protein abundance between tender and tough meat from bovine Longissimus thoracis muscle assessed by iTRAQ and 2-DE analysis. Journal of Animal Science 2012; 90(6): 2035-2043.

Grimme C, Gemoll T, Habermann J, Seide K, Gerlach UJ. Analysis of protein for the diagnosis of osteitis/osteomyelitis: Initial results. Trauma und Berufskrankheit 2012; 14(1): 5-7.

Smalla KH, Wyneken U. Two-Dimensional Gel Electrophoresis-Based Proteomic Analysis of Brain Synapses. Neuroproteomics 2012; 57(3): 95-113.

Barthel A (2010). Protein analysis and tissue culture of the sex pheromone gland of Lepidoptera. Diplomarbeit am Max-Planck-Institut für Chemische Ökologie (Jena).

More publications and selected customers you will find here.

.

Support

We are happy to provide further information.

Please get in touch with us by phone +49 - 345 -2799 6413 (Mo - Fri 9am - 5pm)

or by email infodyeagnostics.com.

.

Comments are closed.